Microbial Networks

Prof. Dr. Victor Sourjik

Research area

We are interested in a broad range of topics in quantitative microbiology, using bacteria (primarily E. coli) and yeast (S. cerevisiae) as model systems. Our main focus is on quantitative analysis of the organization and molecular and physiological functions of cellular networks in microorganisms. We use quantitative fluorescence microscopy and other techniques to investigate the ability of these networks to sense and integrate multiple environmental and internal stimuli (i), to reliably function in a noisy cellular environment (ii), to spatially organize within the cell (iii), and to adjust their function to changing environmental conditions by gene regulation and by slower evolutionary adaptation (iv). We further aim to better understand the relationship between the single-cell and collective behavior within microbial communities, including cell differentiation and communication. In most of our work, we combine experiments with theoretical analysis and computational modeling to elucidate principles that are common to various biological systems, such as suppression and utilization of biological variation and self-organization. Finally, we explore how cellular functions could be reengineered for potential biosynthetic and metabolic applications and aim for an in-vitro reconstitution of essential cellular processes. 

Center for Synthetic Microbiology (SYNMIKRO)

Our department has been established as a part of the
LOEWE Center for Synthetic Microbiology (SYNMIKRO), a joint initiative of the Philipps-Universität Marburg and the Max Planck Institute for Terrestrial Microbiology.
Homepage of V. Sourjik at SYNMIKRO

Selected recent publications

Laganenka, L., Lee, J.-W., Malfertheiner, L., Dieterich, C. L., Fuchs, L., Piel, J., von Mering, C., Sourjik, V., Hardt, W.-D. (2022) Chemotaxis and autoinducer-2 signalling mediate colonization and contribute to co-existence of Escherichia coli strains in the murine gut. Nat Microbiol, doi: 10.1038/s41564-022-01286-7 [link]

Bellotto, N., Agudo-Canalejo, J., Colin, R., Golestanian, R., Malengo, G., Sourjik, V. (2022) Dependence of diffusion in Escherichia coli cytoplasm on protein size, environmental conditions and cell growth. eLife, 11:e82654 [link]

Scarinci, G., Sourjik, V. (2022) Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community. The ISME journal [link]

Ni, B., Colin, R., Sourjik, V. (2021) Production and Characterization of Motile and Chemotactic Bacterial Minicells, ACS Synth Biol.;10(6):1284-1291. [link]

Anders, A., Colin, R., Banderas, A., Sourjik, V. (2021) Asymmetric mating behavior of isogamous budding yeast. Sci Adv, 7(24):eabf8404. [link]

Anders, A., Ghosh, B., Glatter, T., Sourjik, V. (2020) Design of a MAPK signalling cascade balances energetic cost versus accuracy of information. Nat Commun 13, 3494 [link]

Ni, B., Colin, R., Link, H., Endres, R.G., and Sourjik, V. (2020). Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. PNAS 117, 595-601.[link]

Suchanek, V.M., Esteban-Lopez, M., Colin, R., Besharova, O., Fritz, K., and Sourjik, V. (2019). Chemotaxis and cyclic-di-GMP signalling control surface attachment of Escherichia coli. Mol Microbiol, doi: 10.1111/mmi.14438.[link]

Colin, R., Drescher, K., and Sourjik, V. (2019). Chemotactic behaviour of Escherichia coli at high cell density. Nat Commun 10, 5329.[link]

Laganenka, L., Sander, T., Lagonenko, A., Chen, Y., Link, H., and Sourjik, V. (2019). Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1. mBio 10.[link]

Schauer O, Mostaghaci B, Colin R, Hürtgen D, Kraus D, Sitti M, Sourjik V. (2018) Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display. Sci Rep., doi: 10.1038/s41598-018-28102-9.[link]

Lopes JG, Sourjik V. (2018) Chemotaxis of Escherichia coli to major hormones and polyamines present in human gut. ISME J., doi: 10.1038/s41396-018-0227-5. PMID: 29995838 [link]

Bi S, Jin F, Sourjik V. (2018) Inverted signaling by bacterial chemotaxis receptors. Nat Commun., 9, 2927, doi: 10.1038/s41467-018-05335-w. PMID: 30050034 [link]

Colin, R., Rosazza, C., Vaknin, A., and Sourjik, V. (2017). Multiple sources of slow activity fluctuations in a bacterial chemosensory network. eLife 6. [link]

Yuan, J., Jin, F., Glatter, T., and Sourjik, V. (2017). Osmosensing by the bacterial PhoQ/PhoP two-component system. Proc Natl Acad Sci USA, doi: 10.1073/pnas.1717272114.[link]

Paulick, A., Jakovljevic, V., Zhang, S., Erickstad, M., Groisman, A., Meir, Y., Ryu, W.S., Wingreen, N.S., and Sourjik, V. (2017) Mechanism of bidirectional thermotaxis in Escherichia coli. eLife 6[link]

Colin, R., and Sourjik, V. (2017). Emergent properties of bacterial chemotaxis pathway. Curr Opin Microbiol 39, 24-33. [link]

Murray, S., and Sourjik, V. (2017). Self-organisation and positioning of bacterial protein clusters. Nature Physics 13, 1006–1013. [link]

Ni, B., Ghosh, B., Paldy, F.S., Colin, R., Heimerl, T., and Sourjik, V. (2017). Evolutionary Remodeling of Bacterial Motility Checkpoint Control. Cell Rep 18, 866-877. [link]

Laganenka L, Colin R, Sourjik V (2016) Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun 7: 12984. [link]

Besharova O, Suchanek VM, Hartmann R, Drescher K, Sourjik V (2016) Diversification of Gene Expression during Formation of Static Submerged Biofilms by Escherichia coli. Front Microbiol 7: 1568. [link]

Bi S, Pollard AM, Yang Y, Jin F, Sourjik V (2016) Engineering hybrid chemotaxis receptors in bacteria. ACS Synth Biol, 5: 989-1001 [link]

Banderas A, Koltai M, Anders A, Sourjik V (2016) Sensory input attenuation allows predictive sexual response in yeast. Nat Commun 7: 12590. [link]

Somavanshi R, Ghosh B, Sourjik V (2016) Sugar influx sensing by the phosphotransferase system of Escherichia coli. PLoS Biol 14: e2000074. [link]

Typas A, Sourjik V (2015) Bacterial protein networks: properties and functions. Nat Rev Microbiol 13: 559-572. [link]

 

Go to Editor View