Microbial Networks

Prof. Dr. Victor Sourjik

Research area

We are interested in a broad range of topics in quantitative microbiology using prokaryotic (primarily the bacterium E. coli) and eukaryotic (budding yeast S. cerevisiae) model systems. Our main focus is on the quantitative analysis of molecular and physiological functions of cellular networks in microorganisms. We use quantitative fluorescence microscopy and other techniques to investigate the ability of these networks to sense and integrate multiple environmental and internal stimuli, including those involved in host-microbe interactions (i), to function reliably in a noisy cellular environment (ii), and to adjust their function to changing environmental conditions through gene regulation and evolutionary adaptation (iii). We further aim to better understand the relationship between single-cell and collective behaviors within microbial communities, including cell differentiation, communication and community evolution. In most of our work, we combine experiments with theoretical analysis and computational modeling to elucidate principles common to different biological systems. Finally, we explore how cellular functions can be rationally redesigned for potential bioengineering applications.

 Victor Sourjik's research group in 2015

 Victor Sourjik's research group in 2015

Victor Sourjik and group in 2017

Victor Sourjik and group in 2017

Group members in 2020

Group members in 2020

Group picture in 2021

Group picture in 2021

 the group led by Victor Sourjik in 2023

 the group led by Victor Sourjik in 2023

Selected recent publications

Xu, W., Cerna-Vargas, J. P., Tajuelo, A., Lozano Montoya, A., Kivoloka, M., Krink, N., Monteagudo-Cascales, E., Matilla, M. A., Krell, T. & Sourjik, V. (2023) Systematic mapping of chemoreceptor specificities for Pseudomonas aeruginosa. mBio doi: 10.1128/mbio.02099-23. Online ahead of print [link]

Lamprecht, O., Ratnikava, M., Jacek, P., Kaganovitch, E., Büttner, N., Fritz, K., Biazruchka, I., Köhler, R. C., Pietsch, J. & Sourjik, V. (2023) Regulation by cyclic di-GMP attenuates dynamics and enhances robustness of bimodal curli gene activation in Escherichia coli. PLoS genetics 19(5):e1010750. doi: 10.1371/journal.pgen.1010750 [link]

Bi, S., Kargeti, M., Colin, R., Farke, N., Link, H. & Sourjik, V. (2023) Dynamic fluctuations in a bacterial metabolic network. Nature communications 14(1):2173. doi: 10.1038/s41467-023-37957-0. [link]

Laganenka, L., Lee, J.-W., Malfertheiner, L., Dieterich, C. L., Fuchs, L., Piel, J., von Mering, C., Sourjik, V., Hardt, W.-D. (2022) Chemotaxis and autoinducer-2 signalling mediate colonization and contribute to co-existence of Escherichia coli strains in the murine gut. Nat Microbiol, doi: 10.1038/s41564-022-01286-7 [link]

Bellotto, N., Agudo-Canalejo, J., Colin, R., Golestanian, R., Malengo, G., Sourjik, V. (2022) Dependence of diffusion in Escherichia coli cytoplasm on protein size, environmental conditions and cell growth. eLife, 11:e82654  [link]

Scarinci, G., Sourjik, V. (2022) Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community. The ISME journal [link]

Ni, B., Colin, R., Sourjik, V. (2021) Production and Characterization of Motile and Chemotactic Bacterial Minicells, ACS Synth Biol.;10(6):1284-1291. [link]

Anders, A., Colin, R., Banderas, A., Sourjik, V. (2021) Asymmetric mating behavior of isogamous budding yeast. Sci Adv, 7(24):eabf8404. [link]

Anders, A., Ghosh, B., Glatter, T., Sourjik, V. (2020) Design of a MAPK signalling cascade balances energetic cost versus accuracy of information. Nat Commun 13, 3494 [link]

Ni, B., Colin, R., Link, H., Endres, R.G., and Sourjik, V. (2020). Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. PNAS 117, 595-601.[link]

Suchanek, V.M., Esteban-Lopez, M., Colin, R., Besharova, O., Fritz, K., and Sourjik, V. (2019). Chemotaxis and cyclic-di-GMP signalling control surface attachment of Escherichia coli. Mol Microbiol, doi: 10.1111/mmi.14438.[link]

Colin, R., Drescher, K., and Sourjik, V. (2019). Chemotactic behaviour of Escherichia coli at high cell density. Nat Commun 10, 5329.[link]

Laganenka, L., Sander, T., Lagonenko, A., Chen, Y., Link, H., and Sourjik, V. (2019). Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1. mBio 10.[link]

Schauer O, Mostaghaci B, Colin R, Hürtgen D, Kraus D, Sitti M, Sourjik V. (2018) Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display. Sci Rep., doi: 10.1038/s41598-018-28102-9.[link]

Lopes JG, Sourjik V. (2018) Chemotaxis of Escherichia coli to major hormones and polyamines present in human gut. ISME J., doi: 10.1038/s41396-018-0227-5. PMID: 29995838 [link]

Bi S, Jin F, Sourjik V. (2018) Inverted signaling by bacterial chemotaxis receptors. Nat Commun., 9, 2927, doi: 10.1038/s41467-018-05335-w. PMID: 30050034 [link]

Colin, R., Rosazza, C., Vaknin, A., and Sourjik, V. (2017). Multiple sources of slow activity fluctuations in a bacterial chemosensory network. eLife 6. [link]

Yuan, J., Jin, F., Glatter, T., and Sourjik, V. (2017). Osmosensing by the bacterial PhoQ/PhoP two-component system. Proc Natl Acad Sci USA, doi: 10.1073/pnas.1717272114.[link]

Paulick, A., Jakovljevic, V., Zhang, S., Erickstad, M., Groisman, A., Meir, Y., Ryu, W.S., Wingreen, N.S., and Sourjik, V. (2017) Mechanism of bidirectional thermotaxis in Escherichia coli. eLife 6[link]

Colin, R., and Sourjik, V. (2017). Emergent properties of bacterial chemotaxis pathway. Curr Opin Microbiol 39, 24-33. [link]

Murray, S., and Sourjik, V. (2017). Self-organisation and positioning of bacterial protein clusters. Nature Physics 13, 1006–1013. [link]

Ni, B., Ghosh, B., Paldy, F.S., Colin, R., Heimerl, T., and Sourjik, V. (2017). Evolutionary Remodeling of Bacterial Motility Checkpoint Control. Cell Rep 18, 866-877. [link]

 

 

 

Go to Editor View