Molecular Phytopathology

Prof. Dr. Regine Kahmann

Our research is focused on the mechanisms that enable biotrophic fungi to colonize plants and to cause disease. Biotrophic fungi establish interactions with plants in which the host tissue needs to be kept alive to sustain fungal growth. Initially, biotrophic fungi - like all microbes in contact with plants - are recognized by the plant immune system via conserved microbe-associated molecular patterns (MAMPS). Recognition involves Pattern Recognition Receptors and leads to the induction of plant defense responses in the course of which reactive oxygen species and antimicrobial compound detrimental to the pathogen are produced. This process is termed Pattern-Triggered Immunity (PTI). Successful pathogens need to downregulate PTI, and this is achieved through several hundred secreted effector molecules. Effectors can suppress PTI by repressing respective plant defense genes, they can inhibit the enzymatic activity of plant enzymes attacking the pathogen, they can shield fungal hyphae from enzymatic attack and they can reprogram the metabolism of the host to meet pathogen needs.The combined activity of these effectors triggers plant susceptibility and promotes disease. The corn smut fungus Ustilago maydis is used to study the molecular function of effectors because in this system efficient technologies for reverse genetics, cell biology and biochemistry are in place. At the same time U. maydis serves as a model for the large group of basidiomycete plant pathogens which also include the obligate biotrophic rust fungi, the most devastating plant pathogens known.

Recent publications

Dutheil, J.Y., Münch, K., Schotanus, K., Stukenbrock, E. H. and Kahmann, R. (2020)
The insertion of a mitochondrial selfish element into the nuclear genome and its consequences. Ecol Evol. 10, 11117-11132. doi:10.1002/ece3.6749

Kämper, J., Friedrich, J. M. and Kahmann, R. (2020)
Creating novel specificities in a fungal nonself recognition system by single step homologous recombination events
New Phytol. 2020 Jun 19. doi:10.1111/nph.16755

Fisher, M., Gurr, S., Cuomo, C., Blehert, D., Jin, H., Stukenbrock, E., Stajich, J., Kahmann, R., Boone, C., Denning, D., Gow, N., Klein, B., Kronstadt, J., Sheppard, D., Taylor, J., Wright, G., Heitman, J., Casadevall, A. and Cowen, L. (2020)
Threats posed by the Fungal Kingdom to humans, wildlife, and agriculture
mBio. 2020 May 5; 11(3): e00449-20. doi:10.1128/mBio.00449-20

Altegoer, F., Weiland, P., Giammarinaro, P. I., Freibert, S. A., Binnebesel, L., Han, X., Lepak, A., Kahmann, R., Lechner, M. and Bange, G. (2020)
The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense
J Biol Chem. 2020 Jun 5; 295(23): 7816-7825. doi: 10.1074/jbc.RA119.012207

Tanaka, S., Gollin, I., Rössel, N. and Kahmann, R. (2020)
The functionally conserved effector Sta1 is a fungal cell wall protein required for virulence in Ustilago maydis
New Phytol. 2020 Jul;227(1):185-199. doi: 10.1111/nph.16508. Epub 2020 Mar 25

Han, X. and Kahmann, R. (2019)
Manipulation of phytohormone pathways by effectors of filamentous plant pathogens
Front. Plant Sci. 10:822. doi: 10.3389/fpls.2019.00822

Schuster, M. and Kahmann, R. (2019)
CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes
Fungal Genet. Biol. 130, 43-53. doi: 10.1016/j.fgb.2019.04.016

Roth, R., Hillmer, S., Funaya, C., Chiapello, M., Schumacher, K., Lo Presti, L., Kahmann, R., and Paszkowski, U. (2019)
Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules
Nature Plants 5, 204-211. doi: 10.1038/s41477-019-0365-4

Han, X., Altegoer, F., Steinchen, W., Schuhmacher, J., Glatter, T., Giammarinaro, P., Djamei, A., Rensing, S., Reissmann, S., Kahmann, R. and Bange, G. (2019)
A kiwellin disarms metabolic activity of a secreted fungal virulence factor
Nature. 2019 Jan;565(7741):650-653. doi: 10.1038/s41586-018-0857-9. Epub 2019 Jan 16.

Tanaka, S., Rössel, N., Fukada, F., Schweizer, G., Thines, M. and Kahmann, R. (2019)
Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis
Nat Microbiol. 2019 Feb;4(2):251-257. doi: 10.1038/s41564-018-0304-6. Epub 2018 Dec 3

Krombach, S., Reissmann, S., Kreibich, S., Bochen, F. and Kahmann, R. (2018)
Virulence function of the Ustilago maydis sterol carrier protein 2
New Phytologist 220:553-566. doi:10.1111/nph.15268

Schuster, M., Trippel, C., Happel, P., Lanver, D., Reißmann, S. and Kahmann, R. (2018)
Single and Multiplexed Gene Editing in Ustilago maydis Using CRISPR-Cas9.
Bio-protocol. 8(14): e2928. doi:10.21769/BioProtoc.2928

Ma, L.-S., Wang, L., Trippel, C., Mendoza-Mendoza, A., Ullmann, S., Moretti, M., Carsten, A., Kahnt, J., Reissmann, S., Zechmann, B., Bange, G. and Kahmann, R. (2018)
The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins
Nature Communications 9:1711. doi: 10.1038/s41467-018-04149-0

Schweizer, G., Münch, K., Mannhaupt, G., Schirawski, J., Kahmann, R. and Dutheil, J.Y. (2018)
Positively selected effector genes and their contribution to virulence in the smut fungus Sporisorium reilianum.
Genome Biol Evol. 10(2):629-645. doi: 10.1093/gbe/evy023.

Lanver, D., Müller, A., Happel, P., Schweizer, G., Haas, F.B., Franitza, M., Pellegrin, C., Reissmann, S., Altmüller, J., Rensing, S.A. and Kahmann, R. (2018)
The biotrophic development of Ustilago maydis studied by RNAseq analysis.
Plant Cell. 30(2):300-323. doi: 10.1105/tpc.17.00764. Epub 2018 Jan 25.

Schuster, M., Schweizer, G. and Kahmann, R. (2018)
Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes.
Fungal Genet. Biol. 112:21-30. doi: 10.1016/j.fgb.2016.12.003. Epub 2017 Jan6.

Ma, L.-S., Pellegrin, C. and Kahmann, R. (2018)
Repeat-containing effectors of filamentous pathogens and symbionts.
Curr Opin Microbiol 13:1-8. doi.org/10.1016/j.mib.2018.01.007



Go to Editor View