Research cooperations

Research cooperations

<strong>Collaborative Research Center SFB987: Microbial Diversity in Environmental Signal Response</strong>
Microorganisms are omnipresent in the biosphere and provide the greatest diversity of life on our planet. They successfully colonize almost every possible ecological niche, regardless of welcoming or hostile conditions, either as highly specialized individual cells, as microbial communities or by forming complex multi-cellular structures. A key factor for their success in colonizing varying habitats is the enormous biochemical, physiological and cellular adaptation potential of microorganisms in response to countless environmental conditions and cues. By generating microbial species with unique metabolic and cellular attributes, microbial diversity is the answer to the demands of evolution. This sets the stage for their ability to adapt to changing conditions within a given ecosystem and to explore new opportunities in novel environmental settings. For most microorganisms there is only one certainty: change! 
Period: 01.07.2012 - 30.09.2020
Speaker: Erhard Bremer, Philipps-Universität Marburg
<strong>Collaborative Research Center TRR174: Spatiotemporal dynamics of bacterial cells</strong>
This DFG-funded collaborative research center comprises 16 research groups from the Marburg and Munich areas. Its goals are to (i) elucidate the molecular mechanisms that regulate the spatiotemporal dynamics of cellular components in bacteria; (ii) extract from the experimental data conserved design principles for spatiotemporally organized systems; and, (iii) mathematically model, design, and synthesize modules that spatially organize minimal cells or cell-free systems.
Period of funding: 01.01.2017 – 31.12.2020
Coordinator: Martin Thanbichler, Philipps-Universität Marburg
<strong>Priority Programme (SPP 2141) “Much more than Defence: the Multiple Functions and Facets of CRISPR-Cas“</strong>
The discovery of the prokaryotic immune system CRISPR-Cas was one of the most exciting breakthroughs in biology in the last twenty years. Initially identified as defence mechanism, we now know that defence is just one of many functions of this molecular machine. Thus, the prevailing view of CRISPR-Cas as a defence system is too narrow. Other important cellular processes are carried out by the CRISPR-Cas system, such as virulence regulation, DNA repair and the regulation of group behaviour, to name only a few. In some cases, CRISPR-Cas systems may even have completely lost their immune-related functions. At this time, we have barely begun to understand the full biological potential of this system. Thus far, the new CRISPR-Cas functions have primarily been discovered fortuitously and systematic approaches to detect roles beyond immunity are lacking. The two major goals of this concerted Priority Programme are: (i) the identification and investigation of new CRISPR-Cas functions beyond viral defence using model representatives of archaea and bacteria; (ii) the elucidation of the molecular mechanisms underlying these novel functions using state-of-the-art methods. The cooperation of researchers from different disciplines, such as microbiology, genetics, medical microbiology, biochemistry, biophysics, bioinformatics, ecology, structural biology, molecular dynamics, single-molecule localisation microscopy and single-molecule biochemistry, will provide the framework for a successful Priority Programme.
Period of funding: 01.11.2018 - 31.10.2021
Speaker: Anita Marchfelder, Ulm University more
<div style="text-align: justify;"><strong><strong><strong><strong>Priority Programme (SPP 1879) "Nucleotide Second Messenger Signaling in Bacteria"</strong></strong></strong></strong></div>
This DFG-funded priority programme centers on establishing the first systematic and comprehensive strategy ever to understand all fundamental aspects of second messenger signaling in bacteria at the molecular level. Biosynthesis, turnover and functions of c-di-GMP, the “classics” cAMP and ppGpp, as well as “newcomers” such as c-di-AMP will be studied from molecular, cellular, physiological, systems-level and ecological perspectives. The research groups in the programme, in particular, focus on understanding (i) sensory inputs into second messenger signaling; (ii) specific functions and “local” signaling of second messenger-producing and degrading enzymes in bacterial species that have multiples of these enzymes; (iii) second messenger effector mechanisms and molecular targets; and, (iv) novel physiological and ecological contexts as well as evolutionary aspects reflected in the molecular biology of second messenger signaling.
Period of funding: 01.09.2016 – 31.08.2022
Coordinator: Regine Hengge, Humboldt Universität zu Berlin
<div style="text-align: left;"><strong>Priority Programm (SPP 1927) "Iron-Sulfur for Life"</strong></div>
Subtitle: [Fe]-hydrogenase: Role of iron-sulfur bonding in holoenzyme assembly and in FeGP-cofactor biosynthesis 
[Fe]-hydrogenase catalyzes the reversible transfer of a hydride from H2to methenyl-tetrahydromethanopterin which is an intermediary step in methanogenesis from H2 and CO2. The enzyme contains one iron per active site. The iron is associated with a unique iron-guanylylpyridinol (FeGP) cofactor. In many methanogens, the [Fe]-hydrogenase structural gene (hmd) is clustered with hmd-co-occurring genes (hcgA-G), which have been shown to be involved in FeGP cofactor biosynthesis. In previous studies, we have already identified the function of five of the hcg gene-products (HcgB, HcgC, HcgD, HcgE and HcgF) using structure to function strategies and biochemical assays. HcgB catalyzed guanylyl-transfer from GTP to the 4-hydroxypyridinol. HcgC is a SAM-dependent methyltransferase; HcgD is a putative iron chaperone. HcgE catalyzes the adenylylation of the carboxy group of a 6-carboxymethyl-guanylylpyridinol precursor. Subsequently the product of HcgE reacts with Cys9 of HcgF yielding a thioester and AMP. Based on chemical precedents, we propose that the thioester reacts with an iron species forming the acyl and thiolate ligands. In the next three years, we would like to identify the function of the two remaining Hcg proteins (HcgA and HcgG), both of which are predicted to be iron-sulfur proteins. For this purpose, we will - as before - employ structure to function strategies, in vitro biosynthesis and metabolite analysis of hcg knock-out mutants. 
Period: 01.09.2016 - 31.05.2023
Speaker: Silke Leimkühler, University of Potsdam
<strong>BMBF Research Initiative Innovationsraum: Bioball - SynBioTech - Synergistische Entwicklung biotechnologischer und chemischer Verfahren zur Wertschöpfung von dezentralen C1-Stoffströmen</strong>
Im Verbundvorhaben SynBioTech als Teil des Innovationsraumes BioBall wird biogenes CO2 in einem chemischen Verfahrensschritt zu Methanol hydriert, das anschließend auf biotechnologischem Wege zu Biomasseprotein für die Futtermittelindustrie bzw. Säure-derivaten für den chemischen Markt umgesetzt wird. Dazu wird Methylobacterium verwendet, das Methanol als Energie- und Kohlenstoffquelle nutzen kann.
Period of funding: 01.04.2020 - 31.03.2023
Speaker: Bastian Etzold, TU Darmstadt more
<strong>BMBF "Mikrobielle Biofabriken: PolyMore - Ein <em>Paenibacillus-Polymyxa</em>-Chassis für die chemische Produktion und neue Sporenprozesse"</strong>

BMBF "Mikrobielle Biofabriken: PolyMore - Ein Paenibacillus-Polymyxa-Chassis für die chemische Produktion und neue Sporenprozesse"

Period of funding: 01.02.2020 – 31.01.2023
Speaker: Johannes Kabisch, TU Darmstadt
<strong>Volkswagen LIFE Grant "BRILIANCE" - BRinging Inorganic carbon to LIfe with Artificial CO2-fixation in a minimal CEll</strong>
Life is the constant conversion of non-living to the living. In this project the research team aims at re-inventing this fundamental process in life. The group will re-program designer cells (so called 'minimal cells') to use a completely novel, artificial way for the capture and conversion of the inanimate gas CO2. This human-made pathway will serve as an alternative to the natural evolved solutions, such as photosynthesis, that also use CO2 and virtually feed all life on earth. The project will explore new ways of harnessing CO2 as sustainable source for the generation of organic compounds present in our everyday life as food, fuels and pharmaceuticals. Thus, these efforts might open new ways of satisfying future human needs by learning from, copying and re-inventing the fundamental ability of life of transforming inorganic carbon into organic matter.
Period of funding: 01.01.2019 - 31.12.2023
Speaker: Tobias Erb more
<strong>MPG-FhG Project: “eBioCO2n” – Herstellung von Spezialchemikalien durch stromgetriebene CO2-Konversion</strong>
Erdöl ist für die chemische Industrie immer noch der wichtigste Rohstoff. Aus ihm erzeugt sie Kunststoffe, Farben und Bausteine von Medikamenten. Zumindest einen Teil des fossilen Rohstoffs durch CO2 zu ersetzen und damit im Sinne einer Kreislaufwirtschaft auch den CO2-Fußabdruck der Chemieproduktion zu verringern, ist Ziel des eBIOCO2n-Projekts. Die Forscher möchten CO2 für die Herstellung von diversen chemischen Produkten nutzen. Mithilfe von Strom aus Wind- und Wasserkraft oder Fotovoltaik wollen sie das Klimagas dabei in synthetische biochemische Prozesse einspeisen, die der natürlichen Fotosynthese nachempfunden sind. Sie kombinieren dafür Ansätze der Bioelektrochemie, Enzymbiologie und Synthetischen Biologie. So entwickeln sie Bioelektroden, um mit Strom Enzyme anzutreiben, die gemeinsam CO2 in verwertbare chemische Substanzen umwandeln. Diese künstliche Enzymkaskade werden die Wissenschaftler mithilfe der Synthetischen Biologie so optimieren, dass der Prozess möglichst effizient abläuft. Schließlich werden sie im Rahmen des Projekts einen Demonstrator bauen, der aus CO2 die Aminosäuren Alanin, Glycin und Aspartat erzeugt, um die Machbarkeit der stromgetriebenen biokatalytischen CO2-Konversionen zu beweisen.
Period of funding: 01.04.2019 - 31.03.2023 more
<strong>DIP project "Spatial and temporal regulation of macromolecular complex formation in bacteria"</strong>
Research in this project focuses on unraveling the spatial distribution of macromolecular complexes in bacterial cells and its underlying mechanisms, as well as to explore the physiological roles of this subcellular spatiotemporal organization. Specifically, we want to elucidate strategies for spatial regulation of bacterial. DIP is an excellence program that aims to strengthen excellence in German-Israeli research cooperation and give substantial support to joint projects of outstanding quality. 
Period: 01.02.2015 - 30.04.2020
Speakers: Orna Amster-Choder, Hebrew University, Jerusalem & Lotte Søgaard-Andersen
more
<strong>Synthetic Biology Community Science Project - DOE Joint Genome Institute: "SYNCO(2)PE"</strong>
The project aims at the implementation of the CETCH cycle, an artificial pathway for the conversion of CO2 into bacteria and unicellular algae. The project will be performed together with the synthetic biology laboratory at the Joint Genome Institute of the US Department of Energy (DOE) and includes the development of novel genetic tools for alphaproteobacteria and unicellular algae.
Period: 11.07.2017 - 10.07.2020
Speaker: Tobias Erb
<strong>FET OPEN Project “FutureAgriculture”</strong>
The FutureAgriculture project aims at improving the yield and rate of carbon fixation in cyanobacteria and plants, which is often the limiting part of photosynthesis. To that end synthetic pathways for photorespiration will be designed in silico, reconstructed in vitro and transplanted in vivo
Period: 01.01.2016 - 31.12.2020
<strong>FET OPEN Project "Gain4Crops"</strong>
The EC-funded project GAIN4CROPS is developing novel disruptive technologies to overcome one of the main constraints on photosynthetic efficiency: photorespiration, a process that reduces CO2 assimilation efficiency, and thus biomass yield and agricultural productivity. In 5-years our project aims improve the efficiency of the most common photosynthetic metabolism in plants, the C3 metabolism, by following a stepwise approach: (i) First, we will enhance C3 photosynthetic efficiency using a naturally occurring variation of photorespiratory metabolism, in particular C3-C4 intermediate photosynthesis; (ii) then, we will further optimize the process by engineering new-to-nature metabolic pathways by innovative plant breeding techniques. These pathways should not only minimize the photorespiratory losses but also convert photorespiration into a process that supports net photosynthesis, thus, avoiding any detrimental release of CO2.
Period of funding: 01.05.2020-30.04.2025
Speaker: Andreas Weber, Heinrich-Heine-Universität Düsseldorf more
<strong>Horizon 2020 Project "BioRoboost"</strong>
Synthetic biology (SynBio) is a multidisciplinary, emergent field, evolving so fast that it still lacks a consensus definition, and its outstanding success in the last years should not hide the difficulties in defining and adopting biological standards: there are both historical and technical difficulties to reach that ambitious goal. Nevertheless, the benefits of improving standardisation of biological systems are overwhelming. The main goal is to further develop standards in biology in a holistic, systematic way: from the biological part to the experimental procedure in a given environment.
Period of funding: 01.10.2018-30.09.2021
Speaker: Manuel Porcar, Valencia more
<strong>BMBF Research Initiative: FormatPlant</strong>
The FormatPlant project aims at establishing an alternative pathway for CO2 fixation through directly converting CO2 into formate with the photosynthetic apparatus. The goal is to develop this alternative photosynthesis from microbial enzymes in photosynthetic bacteria and chloroplasts. The project is funded by the PLANT 2030 program of the 
Period: 01.10.2016 - 31.03.2020
<strong>Max Planck Research Network in Synthetic Biology "MaxSynBio"</strong>
The goal of this Max Planck Society consortium is to pursue bottom-up synthetic biology, reconstituting functional cell-like systems or modules from well-characterized components. 
Period: 01.08.2014 - 31.07.2020
Speaker: Kai Sundmacher, MPI für Dynamik komplexer technischer Systeme
<strong>LOEWE Research Cluster: MegaSyn</strong>
MegaSyn is a Hesse-wide research initiative funded by the Hessen State Ministry of higher Education, Research and the Arts, which focuses on the understanding, and manipulation of the biosynthetic machineries of microorganisms that produce pharmacetuically and biotechnologically interesting biomolecules, such as biofuels, immunosuppressives and antibiotics.
Period: 01.01.2017 - 31.12.2020
Speaker: Helge Bode
<strong>BMBF German-French cooperation on antimicrobial resistance research, Project Grant “Transmission of antimicrobial resistance by gene transfer within bacterial biofilms”</strong>
The central goal of TARGET-Biofilms research proposal is to explore the fundamental and practical aspect of DNA conjugation within bacterial biofilms. The first objective is to provide a comprehensive understanding of the mechanisms, extent, and impact of bacterial conjugation within biofilms. To do so, we will use a genetic system to monitor intra- and interspecies cell-to-cell DNA transfer in live-cells, in combination with an experimental set-up allowing direct imaging of bacterial biofilms in 3D at cellular and sub-cellular resolution. We will address the influence of the biofilm structure and strain composition on the efficiency of DNA transfer and investigate the dissemination of drug-resistance within the community. The second objective is to test the possibility to combine conjugation and CRISPR systems to perform in situ biofilm manipulation, including attempts to disassemble biofilms by killing the resident cells or by suppressing genes required for biofilm formation and stability. Combining DNA transfer functions of conjugation systems with CRISPR/Cas9 genes designed to have a specific effect in targeted bacterial species is an unexplored, yet promising approach, which deserves high interest.
The research program will benefit from the consortium’s expertise in live-cell microscopy approaches dedicated to the study of DNA transfer and biofilms, as well as molecular microbiology. TARGET-Biofilms research program will provide outcomes beneficial to public health, life stock, crops, and the environment.
Period of funding: 01.09.2019 - 31.08.2022 more
<strong>BMBF (FNR/BMEL) "Entwicklung eines Verfahrens zur fermentativen Herstellung von redoxaktiven Substanzen aus Abfallströmen der Papierindustrie für den Einsatz in organischen Redox-Flow-Batterien - RasFerm"</strong>
Im vorliegenden Verbundprojekt soll ein Beitrag zur Nutzung des großen Energiespeicherungspotenzials von Redox-Flow-Batterien geleistet werden, deren Speicherkapazität unabhängig von der elektrochemischen Wandlereinheit skaliert werden kann, und daher von großem Interesse für die Energiewirtschaft ist. Da Redox-Flow-Batterien große Mengen an organischem Elektrolyten benötigen, sollen biogene Stoffströme - im vorliegenden Projekt: Xylose-haltige Abfallströme der Papierwirtschaft - als Substrat für Fermentationsprozesse von Mikroorganismen genutzt werden, die redoxaktive Substanzen (Anthrachinone) herstellen können, die wiederum - chemisch modifiziert - Elektrolyte liefern. Zunächst werden im Verbundprojekt, das aus zwei Teilvorhaben besteht, verschiedene Mikroorganismen für die Biosynthese von Anthrachinonen (AQs) identifiziert und für die Xylose-Verwertung gentechnisch optimiert (Teilvorhaben 2, Goethe-Universität: Konstruktion und Modifikation von Mikroorganismen). Diese Mikroorganismen werden anschließend durch die Verwertung der Dünnlauge der Fa. SAPPI für den Produktionsprozess von redoxaktiven Substanzen (AQ) eingesetzt (Teilvorhaben 1, Technische Hochschule Mittelhessen: Bioprozessentwicklung, Projektkoordination). Um eine möglichst hohe Ausbeute an redoxaktiven Substanzen zu erzielen, werden im TV 1 verschiedene Parameter im Hinblick auf die Medienentwicklung angepasst (Permeat aus Ligninkonzentrierung sowie der Expressionsbedingungen der Mikroorganismen) sowie für eine wirtschaftliche Fermentationsführung (z. B. Fed-Batch-Prozess im Bioreaktor) gemäß PAT analysiert, kontrolliert und standardisiert. Die fermentativ gewonnenen AQ können in einem Anschlussvorhaben nach Aufreinigung/Separation durch die Fa. CMBlu AG mittels Substitution chemisch modifiziert werden, um die elektrochemischen Eigenschaften entsprechend der Anwendung als Elektrolyt anzupassen
Period of funding: 01.05.2019 - 30.04.2021
Speaker: Peter Czermak, TH Mittelhessen more
<strong>BMBF "Quorum Quenching Natural Products"</strong>

BMBF "Quorum Quenching Natural Products"

Period of funding: 01.08.2018 - 31.12.2020
Speaker: Ralf Heermann, Mainz University
<strong>LOEWE Research Cluster "Dynamics of Membranes. Molecular basics and theoretical description: DynaMem"</strong>
DynaMem combines research approaches of the basic behavior of biological membranes, the dynamics of membranes, membrane systems and organelles in cellular, supra-cellular context and also at level of organisms to understand basic principles of dynamics and their significance in a cellular context in a long term run. Detailed analyses of new aspects of membrane dynamics will lead to knowledge which leads to new strategies for the development of therapeutically approaches. According to this scientific overall concept DynaMem is structured into three interconnecting key aspects: (A) Manipulation of membrane functions, (B) Cellular manipulation of membrane dynamics, (C) Dynamics of membrane systems and organelles.
Period of funding: 01.01.2018 - 31.12.2021
Speaker: Enrico Schleiff, Goethe University Frankfurt more
<strong>LOEWE-Center "Translational Biodiversity Genomics (TBG)"</strong>
Die in ihrer Bedeutung stark gewachsene Biodiversitätsforschung ist bisher überwiegend organismisch und ökologisch ausgerichtet. Große technisch-methodologische Fortschritte erlauben es nun, Biodiversitätsforschung genomisch und damit zugleich stärker anwendungsorientiert auszurichten. Das LOEWE-Zentrum für Translationale Biodiversitätsgenomik (LOEWE-TBG) will die grundlegende Erforschung der Genome einer breiten Organismenvielfalt mit der Entwicklung anwendungsfähiger Dienstleistungen und Produkte verbinden. Entsprechend liegt der zentrale Fokus von LOEWE-TBG darauf, die genomische Vielfalt als basale Ebene der Biodiversität für die Grundlagen- und angewandte Forschung zugänglich und nutzbar zu machen.
Period of funding: 01.01.2018 - 31.12.2021
Speaker: Axel Janke, Senckenberg Research Institute, Frankfurt more
<strong>LOEWE Center for Synthetic Microbiology (SYNMIKRO)</strong>
The Philipps-Universität and the Max Planck Institute for Terrestrial Microbiology have been granted more than 50 million Euro in funding from 2010 to 2018 to establish the LOEWE Research Center for Synthetic Microbiology (SYNMIKRO). The LOEWE Program is an excellence initiative of the state of Hessen to support excellent research at universities and other research institutions in Hessen.
<div><strong>International Max Planck Research School for Environmental, Cellular and Molecular Microbiology.</strong></div>
Research in the graduate school aims at understanding how microorganisms compete, adapt, and differentiate in response to changes in the environment. To reach this aim, microbial ecology is tightly integrated with molecular and cellular microbiology and microbial physiology and biochemistry. The faculty members of the graduate school are from the Max Planck Institute or the Philipps-Universität.

Go to Editor View