Research Groups

Complex Adaptive Traits (CATs) - Dr. Ilka Bischofs-Pfeifer

The Bischofs lab studies complex adaptive traits (CATs) of stressed bacteria. Our goals are to understand, to control and to engineer such traits. Using tools from molecular biology, microscopy and mathematical modelling we investigate how signaling networks regulate CATs. We seek to reveal fundamental organizing principles that relate the molecular network design to population-level behavior and vice versa. This should facilitate rational manipulations of bacterial populations and the implementation of novel functionalities into “smart” communities in the future.

More about "Complex adaptive traits"


Insect gut microbiology and symbiosis - Prof. Dr. Andreas Brune

Termite guts are tiny bioreactors converting lignocellulose to microbial fermentation products that fuel the metabolism of the host. My research group studies the role of the termite gut microbiota in the symbiotic digestion of wood, focusing on the biology of the prokaryotic and eukaryotic symbionts and their interactions, the structure and functions of the intestinal ecosystem, and the evolution of its microbiota. Other aspects are the microbial processes in the guts of humivorous soil macrofauna, such as soil-feeding termites and scarab beetle larvae.

More about "Insect gut microbiology and symbiosis"


Methanotrophic bacteria, and environmental genomics/transcriptomics - PD Dr. Werner Liesack

The main theme of our research is microbial ecology. The projects cover topics at the molecular, genomic, cellular, and community levels. The current research is focused on (i) the molecular biology and ecophysiology of Methylocystis sp. strain SC2, (ii) soil metatranscriptomics, and (iii) microbial communities in Sphagnum-dominated peatlands. The main findings are described in Recent Research (Liesack 2012-2014).

More about "Methanotrophic bacteria, and environmental genomics/transcriptomics"


Microbial protein structure - Seigo Shima, Ph.D.

This group is presently working on three projects: (i)analysis of the structure and the catalytic mechanism of [Fe]-hydrogenase (Hmd), (ii) crystal structure analysis of tetrahydromethanopterin (H4MPT)- and F420-dependent enzymes, and (iii) characterization of enzymes involved in anaerobic oxidation of methane.

More about "Microbial protein structure"

Go to Editor View